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1 .

Let gcz,
= EH4

Since f is entire , so is g.

Also Igtt, I = let I = leitmotiv ix.y, I
= EU4Y,

I eU°

By Liouville 's Theorem
, g is constant

.

Hence
,
u is constant .

A

2. Let 9kt = ¥⇒ .

Since f is analytic and fits to anywhere in R
,

g
is well - defined and analytic in R

.

By Maximum Principle , 19411=1%1 has a maximum

value in R which occurs on the boundary of R

and never in the interior
.

Hence
,
Hal has a minimum value in R which

occurs on the boundary of R and never in

the interior
.

A



3
.

Let R be a closed bonneted region with 0 in the

interior of R and feel = Z

clearly ,
t is analytic on R .

But zf Hail
= that = o and 0 is an interior

point of R
.

It

4
.

Let fit, = sine , then He)f= sink tsinhy
.

Hall attains its maximum

⇐ 7 Heth
' attains its maximum

⇒ sink and imhy attains their maximum

⇐7 z = I ti .

A

5
.
Let goes = et

"

.

Since f is analytic on R
, g is analytic

and ghetto anywhere on R
.

By 131
,
⇒ I = e

""" has a minimum value in



R which occurs on
the boundary of R and never

in the interior .

So does ulx, y ) .
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4. cost = - sink - 1

is ft )
"
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9 . tHi=sinE= If ¥,""
•

I - 1)
"

4h-12
= E Z
A-ollnt !) !

• Into ) n
= E Z
ko h !

By comparing the coefficients
,
tanto)=o and

f-
'"" to )=o

,
f n EIN

. It

is z2nt1
10

.

(a) sinht = Io linty!

• z2n
- I • z2hHimhZ

= [
cznty !

= I + E-oknt3!
22
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(b) sinz =
It-11"z
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